

Write your student exam number in the boxes						
	l	l	l	l	l	

Northern Beaches Secondary College Manly Campus

2023

Higher School Certificate Trial Examination

Mathematics Advanced

General

Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black non-erasable pen.
- NESA approved calculators may be used.
- A reference sheet is provided.
- For questions in Section II, show relevant mathematical reasoning and/ or calculations.

Total Marks: Section I – 10 marks (pages 3 - 6)

100

- Attempt Questions 1-10.
- Allow about 15 minutes for this section.

Section II – 90 marks (pages 8 –37)

- Attempt Questions 11–34.
- Allow about 2 hours and 45 minutes for this section.

Blank Page

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1–10.

- 1. What is the range of the function $f(x) = -x^2 6x + 4$
 - A. $y \in [-23, \infty)$
 - B. $y \in (-\infty, -23]$
 - C. $y \in [-13, \infty)$
 - D. $y \in (-\infty, 13]$
- 2. Which of the following relations is not many-to-one?
 - A. y = |1 x|
 - B. $y = \sqrt{1 x^2}$
 - C. $y = 1 x^2$
 - D. $y = \frac{1}{1 x}$
- 3. Which of the following is equivalent to $\frac{d}{dx} \log_2(x-5)$?
 - A. $\frac{1}{x \ln(2)}$
 - $B. \qquad \frac{1}{(x-5)\ln(2)}$
 - C. $\frac{2}{x}$
 - D. $\frac{2}{x-5}$

- 4. The graph of y = g(x) is obtained by transforming the graph of y = f(x) such that $g(x) = \frac{1}{3}f(x) + 6$.
 - Which sequence of transformations takes y = f(x) to y = g(x)?
 - A. vertical dilation by a factor of $\frac{1}{3}$ followed by translation up 6 units
 - B. translation up 2 units followed by vertical dilation by a factor of $\frac{1}{3}$
 - C. vertical dilation by a factor of 3 followed by translation up 6 units
 - D. translation up 18 units followed by vertical dilation by a factor of 3
- 5. An arithmetic sequence is defined by $T_n = 5n 2$.
 - The sum of the first n terms is given by
 - A. $\frac{n(5n-9)}{2}$
 - B. $\frac{n(5n+1)}{2}$
 - $C. \qquad \frac{n(5n-2)}{2}$
 - D. $\frac{5n(n+1)}{2}$
- 6. If $x = \log_b 3$ and $y = \log_b 4$, which expression is equivalent to $\log_b 36b$?
 - A. 2*xy*
 - B. 2xyb
 - C. 2x + y + 1
 - D. $x^2 + y + b$

A die is rolled twice. Let events A and B be:

 $A = \{$ The first roll is a 1 $\}$ $B = \{$ sum of the two rolls is 7 $\}$

Which of the following statements is true:

- A. Events A and B are independent.
- B. Events A and B are mutually exclusive.
- C. Event A is a subset of event B.
- D. The probabilities of events A and B are different.
- 8. Which of the following functions best represents the graph below?

A.
$$y = \tan\left(4x + \frac{\pi}{2}\right)$$

B.
$$y = \tan\left(4x + \frac{\pi}{4}\right)$$

C.
$$y = \tan\left(2x + \frac{\pi}{2}\right)$$

D. $y = \tan\left(2x + \frac{\pi}{4}\right)$

D.
$$y = \tan\left(2x + \frac{\pi}{4}\right)$$

- 9. Find the probability that $-1 \le 2\sin\theta + 1 \le 2$ where θ is chosen randomly in the range $0 \le \theta \le 2\pi$
 - A. -
 - B. $\frac{1}{2}$
 - C. $\frac{2}{3}$
 - D. $\frac{4}{5}$
- 10. The graph below represents the value A_n , in dollars, of an annuity investment for five time periods.

Which of the following recurrence relations could match this graphical representation?

- A. $A_0 = 200\ 000, \quad A_{n+1} = 1.015\ A_n 2500$
- B. $A_0 = 200\ 000, A_{n+1} = 1.025\ A_n 5\ 000$
- C. $A_0 = 200\ 000, A_{n+1} = 1.035\ A_n 5\ 500$
- D. $A_0 = 200\ 000, A_{n+1} = 1.04\ A_n 6\ 000$

End of Multiple-Choice Questions

2023 Higher School Certificate Trial Examination

NBSC Manly Campus

Write your student exam number in the boxes				

Mathematics Advanced

Section II Answer Booklet 1

Section II

90 marks

Attempt questions 11 - 34.

Allow about 2 hours and 45 minutes for this section.

Booklet 1 – Attempt Questions 11 – 19 (32 marks)

Booklet 2 – Attempt Questions 20 – 27 (28 Marks)

Booklet 3 – Attempt Questions 28 – 34 (30 Marks)

Instructions

- Write your Student Number at the top of this page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the end of this booklet. If you use this space, clearly indicate which question you are answering.

Question 11 (2 marks) Find	2
$\frac{d}{dx}e^{2x}\cos(2x+1)$	
Question 12 (4 marks) Two bags contain a number of red and green marbles:	
• bag A contains 3 red marbles and 4 green marbles	
• bag B contains 5 red marbles and 2 green marbles.	
A six-sided die is rolled. If the face of the die shows a number that is 1 or 2, then a marble from	
bag A will be selected at random. Otherwise, a marble from bag B will be selected.	
a) What is the probability that a green marble will be selected?	
	2
b) It is known that a green marble is selected.	2
What is the probability that the marble comes from bag B?	

......

Question 13 (3	marks`)
----------------	--------	---

The table below shows the probability distribution of a discrete random variable X.

х	0	2	4	5	8	9
P(X=x)	k ²	0.16	0.18	0.3	k	0.12

										2
	a)	Find th	ne value of k	5.						_
•••	••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	•••••	• • • • • • • • • • • • •	• • • • • • • • • • • • •	•••••		
•••	••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
•••	• • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	•••••	• • • • • • • • • • • •	• • • • • • • • • • • • •	•••••		
•••	• • • • •			• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • •	• • • • •	•••••								
• • •								•••••		
	b)	Calcula	ate $E(X)$.							
• • •	• • • • •	•••••								1
• • •		•••••						•••••		
• • •	• • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •		
		•••••					• • • • • • • • • • • • • • • • • • • •	•••••		
	••••	•••••						• • • • • • • • • • • • • • • • • • • •		

Question 14 (4 marks)	2
Question 14 (4 marks) a) Differentiate $\frac{x^2}{x^2 + 1}$	2
b) Hence or otherwise, evaluate $\int_{1}^{2} \frac{x}{(x^{2} + 1)^{2}} dx$	2

Question 13 (4 marks)	Question	15	(4 marks)
-----------------------	----------	----	-----------

A plane flies from City A on a bearing of 063° and distance of 803 km to City B. It then flies due south to City C. The plane then flies back to City A, which is 720 km from City C. The first leg of the trip is shown in the diagram below.

$A \bullet$	
Find the possible distance(s) of City C from City B.	4
	-
Question 16 (3 marks) Solve $\log_2 x + \log_2 (x - 3) = 2$	3

Question	17 ((5 marks)
Question	1,	

The price P(t) in cents per litre of unleaded petrol during an average year in Broome WA, can be modelled by the function

$$P(t) = 180 + 44 \sin\left(\frac{2\pi t}{183}\right)$$

where t is the number of days after 22 March 2023, for $0 \le t \le 366$.

a) What is the maximum price of petrol during the year?

2

2

b) Sketch the function P(t) for $0 \le t \le 366$

_	Wha					•				•				

Question 18 (2 marks) Find the sum of the first 80 odd positive integers.	2

Question 19 (5 marks)

There are 30 paintings in a warehouse. The box-and-whisker diagram below shows the prices of the paintings inside the warehouse.

a)	Find the interquartile range.	1
	Show there are no outliers.	2
c)	It is given that the mean is \$5500 dollars. Four paintings of respective prices \$3400, \$3500, \$5700 and \$6800 are now donated to an art gallery. Find the mean and the median of the prices of the remaining paintings in the warehouse.	2
• • • • • • •		
• • • • • • •		

Section II extra writing space If you use this space, clearly indicate which question you are answering.

Section II extra writing space If you use this space, clearly indicate which question you are answering.

2023 Higher School Certificate Trial Examination NBSC Manly Campus

Write your student exam number in the boxes								
---	--	--	--	--	--	--	--	--

Mathematics Advanced

Section II Answer Booklet 2

Booklet 2 – Attempt Questions 20 – 27 (28 Marks)

Instructions

- Write your Student Number at the top of this page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the end of the booklet. If you use this space, clearly indicate which question you are answering.

Question 20 (3 marks)	•
a) Show that $y = x^3 - 5x + \frac{xe^{-x^2}}{1+x^4}$ is an odd function.	2
b) Hence, or otherwise, evaluate $\int_{-5}^{5} \left(x^5 - 5x + \frac{xe^{-x^2}}{1 + x^4} \right) dx.$	1

Question 21 (2 marks) Consider the geometric series $3 + 12x + 48x^2 + 192x^3 +$	2
Find the value of x such that the limiting sum of the series is 60.	

Question 22 (3 marks)

The weights of newborn babies are normally distributed with a mean of 7.5 pounds and a standard deviation of 1.1 pounds.

A normal distribution curve is shown below, where the vertical lines represent *z*-scores from -3 to 3.

A baby is considered underweight if their birthweight has a z-score of less than -1.8.

a) Shade the area under the normal distribution curve representing the percentage of babies that are born underweight.

b)	Below what birthweight, in pounds, is a baby considered to be underweight? Give your answer to one decimal place.	1
•••••		
c)	Given that the area under the normal distribution curve below $z = 1.8$ is equal to 0.9641, how many babies in 1,000 would be expected to be born underweight?	1

Question 23 (4 marks)

Let X be a continuous random variable with probability density function $f(x) = \frac{1}{2} e^{-\frac{x}{2}} \text{ for } x > 0$

$$f(x) = \frac{1}{2} e^{-\frac{x}{2}} \text{ for } x > 0$$

	a)	Find the cumulative distribution function of X .	2
••••	••••		
••••	••••		
	••••		
	••••		
••••	••••		
••••	••••		
	b)	Hence find $P(X \ge 2)$ leaving your answer as a percentage to 2 decimal places.	2
••••	••••		
••••	••••		
	••••		
••••	••••		
••••	••••		

Question 24 (3 marks)

The region bounded by the curve $y = \frac{12}{x^2 + 1}$, the x-axis, and the lines x = 1 and x = 5 is shown below.

a) Use two applications of the trapezoidal rule to approximate $\int_{1}^{5} \frac{12}{x^2 + 1}$. Give your answer correct to two decimal places.

2

1

b) Is your answer in part (a) an overestimate or underestimate for the area of the

region? Give a reason for your answer.

Question 25 (4 marks) Sketch the graph of the curve $y = -x^3 - 6x^2 - 9x$ labelling the stationary point(s), point(s) of inflection and intercepts. 4

Question 26 (5 marks) a) Prove that $(1 - \sin x)(\sec x + \tan x) = \cos x$	2
b) Hence, or otherwise, find the exact value of $\int_0^{\frac{\pi}{4}} \sin^2(x) (1 - \sin x) (\sec x + \tan x) dx.$	3

Question 27 (4 marks)

In the diagram, the shaded area represents the region between the graphs of

$$y = \frac{4}{x}$$
 and $y = \sqrt{2x}$ for $1 \le x \le 4$.

4

Find the area of the shaded region.	

Section II extra writing space If you use this space, clearly indicate which question you are answering.

Section II extra writing space If you use this space, clearly indicate which question you are answering.

Blank Page

2023 Higher School Certificate Trial Examination NBSC Manly Campus

Write your student exam number in the boxes								
---	--	--	--	--	--	--	--	--

Mathematics Advanced

Section II Answer Booklet 3

Booklet 3 – Attempt Questions 28 – 34 (30 Marks)

Instructions

- Write your Student Number at the top of this page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the end of the booklet. If you use this space, clearly indicate which question you are answering.

	Question	28	(3)	marks))
--	----------	----	-----	--------	---

Saanvi owns a company producing and selling backpacks. The income function is y = 80x, where x is the number of backpacks sold, is shown below. The cost of producing these backpacks includes a set-up cost of \$4500 and additional costs of \$30 per backpack.

a) Write the cost function in the form y = mx + c

1

b) Add the cost function to the set of axes below.

c) Hence or otherwise, determine Saanvi's break-even point.

Question 29 (3 marks) The graph of $f(x) = \frac{1}{2x}$ is shown below.

3

By considering the areas of the rectangles, show that $\frac{7}{24} < \ln \sqrt{2} < \frac{5}{12}$.

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • •						
	• • • • • • • • • • • • • • • • • • • •						
	• • • • • • • • • • • • • • • • • • • •						
	• • • • • • • • • • • • • • • • • • • •						
	•••••						
• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •						

Question 30 (6 marks)

The graph of y = h(x) is shown below.

The graph is symmetrical about the line x = 2.

a) Sketch the graph of y = h(x + 2), showing **new** locations of points A and B.

2

2

b) Using interval notation, write the values of x for which $h(x) > 3$.	2
c) Find the number of solutions to the equation $h(x) + h(x + 2) = 3$.	2

Question 31 (3 marks)

The table below shows future value interest factors for an annuity of \$1.

A	А	В	С	D	Е	F	G	
1	Table of future value interest factors							
2				Interest rate	e per period			
	Periods\Rate	0.50%	1.00%	1.50%	2.00%	3.00%	6.00%	
3								
4	5	5.0503	5.1010	5.1523	5.2040	5.3091	5.6371	
5	10	10.2280	10.4622	10.7027	10.9497	11.4639	13.1808	
6	20	20.9791	22.0190	23.1237	24.2974	26.8704	36.7856	
7	40	44.1588	48.8864	54.2679	60.4020	75.4013	154.7620	
8	60	69.7700	81.6697	96.2147	114.0515	163.0534	533.1282	

Akira and Ren each undertake an annuity of 6% p.a. for a period of 5 years.

- Akira invests \$3000 per quarter, compounded quarterly.
- Ren invests \$1000 per month, compounded monthly.

Determine who has the better investment and by how much.

3

Question 32 (3 marks) Boxes in the shape of a cube have edges of length 600 mm. The boxes are stacked on top	
of each other in layers against a wall in a storage area. The bottom layer has 20 boxes,	
the next layer has 19 boxes and so on, each layer having one less box than the layer	
below it. The height of the wall is 10 metres.	
a) How many layers of boxes can be stored against the wall?	1
b) How many boxes can be stored against the wall in the storage area?	2

Quest	ion í	33 (6 r	narl	(25
Vucsi	uvii .	יו ענ	OI.	пап	201

On January 1, 2010, Harper deposited \$1200 into a superannuation fund which paid interest at 6% p.a. compounded quarterly. She continued to make regular annual deposits of \$1200 at the beginning of each year, until her last deposit on January 1, 2023. After that she was no longer able to make any more deposits. Harper decided not to withdraw the fund until she retires on December 31, 2030.

3

a)	Find the amount of money in Harper's superannuation fund on December 31, 2018.
•••••	

Question 33 continued on the next page.

	From January 1, 2019, the interest paid changed to 3%p. a. compounded quarterly. the the value of her investment on December 31, 2023.	2
•••••		
•••••		
••••••		
•••••		
••••••		
••••••		
		3
	How much will her superannuation fund be worth when she retires on December 31, 2030.	
••••••		
•••••		

Question 34 (6 marks)

A trapezium is inscribed in a circle centred at O with a radius of 1, such that one of its bases is a diameter of the circle, as shown in the diagram below. The height of the trapezium, h, may vary.

a)	Show that the area	of the trapezium c	an be given by

 $A = h\sqrt{(1-h^2)} + h.$

2

4

	Fin							-			 	 	
 		 	 	 	 	 	 • • • •	 	• • • •	 	 ••••	 	

.....

.....

End of the Paper

Section II extra writing space If you use this space, clearly indicate which question you are answering.

Section II extra writing space If you use this space, clearly indicate which question you are answering.

Section II extra writing space If you use this space, clearly indicate which question you are answering.

Q	Solution	Marking Guidelines
1	Find vertex	D
	$x = -\frac{b}{2a}$	
	$=-\frac{-6}{2(-1)}$	
	= -3	
	at $x = -3$ $y = 13$	
	Concave down, includes 13	
	∴D	
2	∴D A is absolute value graph with 2 arms fails horizontal line test so many-to-one B is top half of semi-circle, fails horizontal line test so is many-to-one, C is concave down parabola fails horizontal line test so is many-to-one D is Hyperbola, passes horizontal line test so is NOT many-to-one	D
3	hence D Use Reference sheet to differentiate.	В
	Note: it is $\log_2(x-5)$ not ln	_
	$=\frac{1}{(\ln 2)(x-5)}$	
4	$\frac{\text{hence } B}{\text{Using Using } y = kf(a(x+b)) + c}$	A
	k is vertical dilation and c is vertical translation	
	$\therefore g(x) = \frac{1}{3}f(x) + 6$	
	is vertical dilation by factor of $\frac{1}{3}$ followed	
	by translation up 6 units	
5	$\frac{\text{hence} = A}{T_1 = 3}$	В
3	$T_n = 5n - 2$	B
	$S_n = \frac{n}{2}(a+l)$	
	$=\frac{n}{2}(3+5n-2)$	
	$=\frac{n}{2}(5n+1)$	
6	$\log_b 36b = \log_b (9 \times 4 \times b)$	С
	$= \log_b 3^2 + \log_b 4 + \log_b b$	
	$= 2\log_b 3 + \log_b 4 + 1$	
	=2x+y+1	
7	$= 2x + y + 1$ $P(B A) = \frac{1}{6} \qquad P(B) = \frac{1}{6}$	A
	∴ Events A and B are independent	
8		С
9		С

10		В
11	$\frac{d}{dx}\Big(e^{2x}\cos(2x+1)\Big)$	2 marks correct solution,
	Use product rule	1 mark if uses
	y' = uv' + vu'	product rule correctly but
	$y' = e^{2x} \times -\sin(2x+1) \times 2 + \cos(2x+1) \times e^{2x} \times 2$	makes only one mistake.
	$= -2e^{2x}\cos(2x+1) - 2e^{2x}\sin(2x+1)$	msuc.
	$= 2e^{2x}(\cos(2x+1) - \sin(2x+1)$	
12	a) Draw a tree diagram	a)
12	R	2 marks correct solution.
	$P(Gr) = \frac{1}{3} \times \frac{4}{7} + \frac{2}{3} \times \frac{2}{7}$	
	$=\frac{4}{21}+\frac{4}{21}$	1 mark correctly adds
	(1.2)4/7	probability but
	$\frac{G}{R} = \frac{8}{21}$	makes one mistake in
	5/7 / ^R	calculating
	4/6 B 3//	probability along the tree
		arms.
	(3,4, $2/7$	
	5,6) $2/7$ G	
		b)
	40 R	2 marks correct solution.
	b) This is conditional Probability. Use $P(A B) = P\frac{A \cap B}{P(B)}$	
		1 mark uses
	$\frac{4}{21}$	conditional probability but
	$P(B_{Gr} Gr) = \frac{\frac{4}{21}}{\frac{8}{21}}$	makes one
	21	error in use of formula.
	1	
	$=\frac{1}{2}$	
	1	<u> </u>

13	a) PDF sums to 1	2 marks correct solution. BUT must find both +/ - k values and give reason why -k is not possible - Probabiliy must be + and >=0 but <= 1 1 mark only for k =0.2 BUT no reasons given why the k = -1.2 value is invalid
	Using $k = 0.2$ $E(X) = 0 \times (0.2)^2 + 2 \times 0.16 + 4 \times 0.18 + 5 \times 0.3 + 8 \times 0.2 + 9 \times 0.12$ $= 5.22$	1 mark correct solution Also 1 mark - Possible carry error mark if incorrect k value used correctly in worked calculation of finding the Expected value
14	a) USE Quotient rule $y' = \frac{vu' - uv'}{v^2}$ $y' = \frac{(x^2 + 1) \times 2x - x^2 \times 2x}{(x^2 + 1)^2}$ $= \frac{2x^3 + 2x - 2x^3}{(x^2 + 1)^2}$ $= \frac{2x}{(x^2 + 1)^2}$	2 marks correct solution using either Quotient rule or Function of a function rule. 1 mark if only one mistake made in process of differentiation or simplification.

b) Note relationship to part a)

$$\therefore \int_{1}^{2} \frac{x}{(x^{2} + 1)^{2}} dx$$

$$= \frac{1}{2} \int_{1}^{2} \frac{2x}{(x^{2} + 1)^{2}} dx$$

$$= \frac{1}{2} \left[\frac{x^{2}}{x^{2} + 1} \right]^{2}, 1$$

$$= \frac{1}{2} \left[\frac{2^{2}}{2^{2} + 1} \right] - \left[\frac{1^{2}}{1^{2} + 1} \right]$$

$$= \frac{1}{2} \left[\frac{4}{5} - \frac{1}{2} \right]$$

$$= \frac{3}{20}$$

2 marks correct solution. Possible carry forward error awarded 2 marks if correctly used incorrect answer from part a)

1 mark if students did not correctly take out factor of 1/2.

Also 1 mark only if substitution done incorrectly into the integral

15 Use sine rule and find two angles OR

- acute and obtuse

4 marks for finding both side lengths for BC

3 marks for using Sine rule finding two possible values for theta (acute and obtuse), but only finding one correct BC length

2 marks for correctly

Show
$$\angle ABC = 63^{\circ}$$
 (alternate angles on parallel line)
$$\frac{803}{\sin \theta} = \frac{720}{\sin 63}$$

$$\sin \theta = \frac{803 \sin 63}{720}$$

$$\theta = \sin^{-1} \left(\frac{803 \sin 63}{720} \right)$$

$$\theta = 83.58^{\circ} \text{ or } 180 - 83.58^{\circ} = 96.42^{\circ}$$

check angle sum of triangle: both are possible

Case 1 if $\angle BCA$ 83.58° then

$$\angle CAB = 33.42^{\circ}$$

$$\therefore \frac{BC}{\sin 33.42^{\circ}} = \frac{720}{\sin 63}$$

$$BC = \frac{720 \times \sin 33.42^{\circ}}{\sin 63^{\circ}}$$

= 445.07 km

Case 2 if $\angle BCA = 96.42^{\circ}$ then

$$\angle CAB = 20.58^{\circ}$$

$$\therefore \quad \frac{BC}{\sin 20.58} = \frac{720}{\sin 63^{\circ}}$$

$$BC = \frac{720 \times \sin 20.58^{\circ}}{\sin 63}$$

= 284.05 km

Also possible to be done using cosine rule and solving the quadratic to find two BC values but many students found this too difficult

finding one angle for theta and one BC length

1 mark only for correct attempt to find theta but made errors and did not find any correct BC value

$$\log_{2} x + \log_{2} (x - 3) = 2$$

$$\log_{2} x(x - 3) = 2$$

$$x(x - 3) = 2^{2}$$

$$x^{2} - 3x = 4$$

$$x^{2} - 3x - 4 = 0$$

$$(x - 4)(x + 1) = 0$$

$$x = 4 \text{ or } x = -1$$

$$\text{but } x - 3 > 0 \text{ (log } > 0)$$

$$x > 3$$

$$x = 4 \text{ only}$$

3 marks correct solution with finding both possible x values and then invalidation of x =-1 Must state why not possible for x=-1 to gain full marks

2 marks
correctly forms
equation to
solve for x but
makes one
mistake or
does not
invalidate x=-1

		1 mark for correct use of log laws
17	a) Max when sin at max =1 Max Price = 180 + 44 = 224 cents	a) 1 mark correct solution
	b) Point of Intersection (183, 180) Point of Intersection (183, 180) Point of Intersection (180, 180)	b) 2 marks correct solution with axes, centre line and 2 periods ending at t = 366
	50 100 150 200 250 300 350 x C)	1 mark if only one mistake in graph eg one period not two
	From graph there are 4 times when $cost = 202c$ Solve	or values incorrect or badly drawn graph.
	$202 = 180 + 44Sin\left(\frac{2\pi t}{183}\right)$ $\frac{22}{44} = \sin\frac{2\pi t}{183}$	c) 2 marks for correct solution with all four t values
	$\sin \frac{2\pi t}{183} = \frac{1}{2}$ Quad 1 and 2 in 2 revolutions	1 mark only for only two solutions
	$\frac{2\pi t}{183} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}$ $t = 15.25, 76.25, 198.25 \text{ and } 259.25$ $\therefore \text{ days } 15, 76, 198 \text{ and } 259$	1 mark awarded for establishing with working that sin value = 1/2
18	1, 3, 5, 7 Arithmetic sequence a= 1 d=2 find 80 th term	2 marks correct solution with working.
		1 mark awarded for solutions that used sum of an arithmetic series but made one mistake.

$$T_{\pi} = a + (n-1)d$$

$$= 1 + (80 - 1) \times 2$$

$$= 159$$

$$S_{80} = \frac{80}{2} (1 + 159)$$

$$= 40 \times 160$$

$$= 6400$$

$$OR$$

$$S_{80} = \frac{80}{2} (2 \times 1 + 79 \times 2)$$

$$= 40(2 + 158)$$

$$= 40 \times 160$$

$$= 6400$$

$$= 6400$$

$$= 6400$$

$$= 6400$$

$$= 2200$$
b) Formula for outliers on Reference sheet

Less than $Q_1 - 1.5 \times IQR$ Or

More than $Q_3 + 1.5 \times IQR$

$$4200 - 1.5 \times 2200 = 900$$

$$\therefore \text{ No outlier as Min is 2300}$$

$$6400 + 1.5 \times 2200 = 9700$$

$$\therefore \text{ No outlier as Max is 8700}$$

$$0 \times \text{ No outlier as Max is 8700}$$

$$0 \times \text{ Sum of all paintings value} = 30 \times 5500 = 165000$$
Sum of four donated painting = 3 400 + 3 500 + 5 700 + 6 800
$$= 19400$$
New mean = $\frac{165000 - 19400}{26}$

$$= 5600$$
Original median = \$5400 (from box plot)
Donated painting have two above median and two below

: Median remains unchanged at \$5 400

calculated

corrected

20a	$(-1)^2$	2 marks –
204	$\int_{-\infty}^{\infty} f(-x) - (-x)^3 = 5(-x) + (-x)e^{-(-x)}$	correct solution
	$f(-x) = (-x)^3 - 5(-x) + \frac{(-x)e^{-(-x)^2}}{1 + (-x)^4}$ $f(-x) = -x^3 + 5x - \frac{xe^{-x^2}}{1 + x^4}$ $f(-x) = -\left(x^3 - 5x + \frac{xe^{-x^2}}{1 + x^4}\right)$	2311000 Boldmoll
	1+(-x)	1 mark – finds
	xe^{-x^2}	f(-x) or $-f(x)$
	$f(-x) = -x^3 + 5x - \frac{xe}{}$	
	$1+x^4$	
	$\left(-x^{2}\right)$	
	$f(-x) = -\frac{1}{x^3 - 5x + \frac{xe^{-x}}{x^2 - $	
	$\left(\begin{array}{ccc} x & x & 1 \\ & 1 + x^4 \end{array}\right)$	
	$\therefore f(-x) = -f(x)$	
201	: function is odd	
20b	integrating an odd function over a balanced interval	
	5	
	$\therefore \int_{5}^{5} x^{3} - 5x + \frac{xe^{-x^{2}}}{1 + x^{4}} dx = 0.$	
	$1+x^4$	
21	r = 4x	2 marks –
^{∠1}	$r = \neg \lambda$	correct solution
	a = 3	correct solution
	$S_{\infty} = \frac{a}{1-r} = \frac{3}{1-4r}$	1 mark –
	1 / 1 7	correct
	3	expression for
	$60 = \frac{3}{1 - 4x}$	limiting sum
	$1-4\lambda$	minuing sum
	60 - 240x = 3	
	$x = \frac{57}{240}$	
	240	
22a		1 mark
	z	
	-3 -2 -1 0 1 2 3	
22b		1 mark
	$Z = \frac{1}{\sigma}$	1 1114111
	$z = \frac{x - \mu}{\sigma}$ $-1.8 = \frac{x - 7.5}{1.1}$	
	Multiply both sides by 1.1:	
	-1.98 = x - 7.5	
	Add 7.5 to both sides:	
22c	Area to the right of $z = 1.8$ is $1 - 0.9641 = 0.0359$	1 mark
	$1000 \times 0.0359 = 35.9 \approx 36$	
	Must round to a whole number in the context of this question. 36 or 35 accepted.	
22	35.9 or 40 not accepted.	2 1
23a	$\int_{a}^{x} \frac{1}{2} e^{-\frac{x}{2}} dx$	2 marks –
	$\int_{0}^{\infty} \overline{2}^{\epsilon} dx$	correct solution
	x x=X	1 01-
	$=-e^{-\frac{1}{2}}$	1 mark –
	_{x=0}	integrates
	$-\frac{x}{2}$ (.0)	correctly
	$= -e^{-\frac{x}{2}} \Big _{x=0}^{x=X}$ $= -e^{-\frac{X}{2}} - (-e^{0})$ $= 1 - e^{-\frac{X}{2}}$	
	$\frac{-X}{2}$	
	$=1-e^{-\epsilon}$	
	$a = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} for r > 0$	
	$\therefore CDF = \begin{cases} 1 - e^{-\frac{x}{2}}, & \text{for } x > 0 \\ 0 & \text{otherwise} \end{cases}$	
	0 otherwise	

26a	$LHS: (1-\sin x)\left(\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right)$	2 marks – correct solution
	·	1 mark – 1
	$\equiv (1 - \sin x) \left(\frac{1 + \sin x}{\cos x} \right)$	missing step
		(see markers note)
	$\equiv \left(\frac{1-\sin^2 x}{\cos x}\right)$,
	$(\cos^2 x)$	
	$\equiv \left(\frac{\cos^2 x}{\cos x}\right)$	
	$\equiv \cos x$	
	=RHS	
	Marks awarded where these points are clearly demonstrated: - writes sec and tan with common denominator cos or equivalent - shows use of Pythagorean trig identity In a proof you cannot skip steps. Setting out still needs improvement for some students.	
26b		3 marks –
	$C^{\frac{\pi}{4}}$	correct solution,
	$\int_0^{4} \sin^2 x (1 - \sin x) (\sec x + \tan x) dx = \int_0^{4} \sin^2 x \cos x dx \text{ (from a)}$	answer must be exact value
	$\left[\sin^3 x\right] \frac{\pi}{4}$	
	$= \left[\frac{\sin^3 x}{3}\right]_0^{\frac{\pi}{4}}$	2 marks –
	$1\left(\left(-\pi\right)^3\right)$	correct
	$=\frac{1}{3}\left(\left(\sin\frac{\pi}{4}\right)^3-\sin(0)\right)$	integration
	$\begin{pmatrix} 1 & 1 \end{pmatrix}^3$	1 mark – uses part a result to
	$=\frac{1}{3}\left(\frac{1}{\sqrt{2}}\right)^3$	simplify
	1	
	$=\frac{1}{6\sqrt{2}}$	
27	Find x value of point of intersection:	4 marks –
	$\frac{4}{x} = \sqrt{2x} \Rightarrow \frac{16}{x^2} = 2x \Rightarrow 16 = 2x^3 \Rightarrow x = 2$	correct solution
	So	3 marks –
	Area = $\int_{1}^{2} \left(\frac{4}{x} - \sqrt{2x}\right) dx + \int_{2}^{4} \left(\sqrt{2x} - \frac{4}{x}\right) dx$	integrates correctly
	31	2 marks –
	$= \int_{1}^{2} \left(\frac{4}{x} - (2x)^{\frac{1}{2}}\right) dx + \int_{2}^{4} ((2x)^{\frac{1}{2}} - \frac{4}{x}) dx$	separates into 2
		integrals correctly
	$= \left[4 \ln x - \frac{1}{2} \times \frac{2}{3} (2x)^{\frac{3}{2}}\right]_{1}^{2} + \left[\frac{1}{2} \times \frac{2}{3} (2x)^{\frac{3}{2}} - 4 \ln x\right]_{2}^{4}$	1 mark – finds
	-12	x=2
	$= \left[4 \ln x - \frac{2\sqrt{2}}{3} \sqrt{x^3}\right]_1^2 + \left[\frac{2\sqrt{2}}{3} \sqrt{x^3} - 4 \ln x\right]_2^4$	
	$=4 \ln 2 - \frac{8}{3} - 0 + \frac{2\sqrt{2}}{3} + \frac{16\sqrt{2}}{3} - 4 \ln 4 - \frac{8}{3} + 4 \ln 2$	
	3 3 3 3	
	$=6\sqrt{2}-\frac{16}{3}=3.15(2dp)$	
	<u> </u>	

28a	y = 4500 + 30x	1 mark correct
	-	function
28b	y	1 mark correct
	8 000 A Cost	graph of function
		Tunetion
		NOTE: Must
	6 000	show correct y-
		int and gradient as per part a
		as per part a
	SE 000	
	å 4 000 –	
	2 000	
	\rightarrow	
	20 40 60 80 100 Number of backpacks sold	
20		1 1
28c	Hence point of intersection: $(90, 7200)$ Otherwise: $80x = 4500 + 30x$	1 mark correct BE point shown
		by algebraic
	50x = 4500	process or
	$x = 7 \ 200$	construction on
	y = 80(90)	graph at part b
	7 200	
20	BE point (90,7 200)	2 1
29	$A = \frac{1}{2} \int_{1}^{2} x^{-1}$ Outer rectangles	3 marks correct solution
	$\frac{1}{2}\int_{1}^{x}$	Solution
	$= \frac{1}{2} [\ln x]^2, 1 = \left(0.5 \times \frac{1}{2}\right) + \left(0.5 \times \frac{1}{3}\right)$	2 marks only
	$=\frac{1}{2}[\ln x]^2, \qquad \qquad$	one error with
	$= \frac{1}{2}(\ln 2 - \ln^1) = \frac{5}{12}$	complete working on 3
		terms of the
	Inner rectangles	inequality
	$= \frac{1}{2} \ln 2$ $= \left(0.5 \times \frac{1}{3}\right) + \left(0.5 \times \frac{1}{4}\right)$	1 mark correct
	$\frac{1}{1}$ $\frac{-\left(0.5 \wedge \frac{1}{3}\right)^{-\left(0.5 \wedge \frac{1}{4}\right)}}{\left(0.5 \wedge \frac{1}{4}\right)}$	progress with
	$= \ln{(2)}^{\frac{1}{2}} = \frac{7}{1}$	max two errors
	$= \ln (2)^2$ $= \ln \left(\sqrt{2}\right)$ $= \frac{7}{24}$	showing
	$-\frac{m(\sqrt{2})}{7}$	complete working on 3
	Therefore $\frac{7}{24} < \ln\sqrt{2} < \frac{5}{12}$	terms of the
		inequality

30a		2 marks correct
	†	solution
		1 mark correct progress with
		only one error
	B(-2,3)	
	$\longleftrightarrow A(0,0)$	
	v · · · ·	
30b	$x \varepsilon (-\infty,0) U(4,\infty)$	2 marks correct solution
		1 mark correct
		progress with only one error
30c		2 marks correct
	† †	solution showing
		method for determination
		of number of solutions
		1 mark correct number of
	×	solutions without a
	Therefore 2 solutions	logical/reasona ble process
31	Akira(quarterly): 1.5% for 20 months => $23.1237 \times 3000 = 69371.1$ Ren(monthly): 0.5% for 60 months => $69.7700 \times 1000 = 69770$	3 marks correct solution
	Therefore Ren has better investment by: $69770 - 69371.1 = 398.90	2 marks only
		one error using table to obtain
		values
		1 mark correct progress using
		the table with max two errors
32a	No. of layers = $10 \text{ m} \div 600 \text{ mm}$	1 mark correct solution
	$= 10\ 000 \div 600$	showing
	$=16\frac{2}{3}$	working
	16 layers of boxes will fit in the storage area.	
32b	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	2 marks correct solution
	_	1 mark correct
	$= \frac{16}{2} \left[2 \times 20 + (16 - 1) \times -1 \right]$	progress with only one error
	= 200 boxes	•

```
9 years = 36 compounding periods(36 quarters)
                                                                                                  3 marks correct
       9 deposits of $1200
                                                                                                  solution
      r = \frac{6\%}{4} = 1.5\% perquarter
                                                                                                  showing
                                                                                                  recursion,
                                                                                                  formation of
       A_1 = 1200(1.015)^4
                                                                                                  series and then
       A_2 = (A_1 + 1200)1.105^4 = (1200(1.015)^4 + 1200)1.015^4
                                                                                                  sum of the
                          = 1200(1.015)^8 + 1200(1.015)^4
                                                                                                  series
       A_3 = (A_2 + 1200)1.105^4 = (1200(1.015)^8 + 1200(1.015)^4 + 1200)1.015^4
                                                                                                  2 marks correct
                          = 1200(1.015)^{12} + 1200(1.015)^{8} + 1200(1.015)^{4}
                                                                                                  progress with
                                                                                                  only one error
                                                                                                  showing
        A_9 = 1200(1.015)^{36} + 1200(1.015)^{32}
                                                                                                  recursion,
        + 1200(1.015)^{28} + \dots + 1200(1.015)^{8} + 1200(1.015)^{4}
= 1200[(1.015)^{4} + (1.015)^{8} + \dots + (1.015)^{32} + (1.015)^{36}]
                                                                                                  formation of
                                                                                                  series and then
        = 1200 \left[ \frac{(1.015)^4 ((1.015)^{36} - 1)}{(1.015)^4 ((1.015)^{36} - 1)} \right]
                                                                                                  sum of the
                                                                                                  series AND
                        (1.015)^4 - 1
                                                                                                  question not
         ≈ $14718.60
                                                                                                  simplified
                                                                                                  1 mark partial
                                                                                                  correct with
                                                                                                 max two errors
                                                                                                  showing
                                                                                                  recursion,
                                                                                                  formation of
                                                                                                  series and then
                                                                                                  sum of the
                                                                                                  series AND
                                                                                                  question not
                                                                                                  simplified
       5 years = 20 compounding periods(20 quarters)
33b
                                                                                                  2 marks correct
       5 deposits of $1200
                                                                                                  solution
       r = \frac{3\%}{4} = 0.75\% perquarter
                                                                                                  showing
                                                                                                  recursion,
                                                                                                  formation of
                                                                                                  series and then
       Compounding Total A_9 = 14718.60(1.0075)^{20}
                                                                                                  sum of the
                                       ≈ $17091.01
                                                                                                  series
       A_{10} = 1200(1.0075)^4
                                                                                                  1 mark correct
       A_{11} = (A_{10} + 1200)1.0075^4 = (1200(1.0075^4 + 1200)1.0075^4)
                                                                                                  progress with
                          = 1200(1.0075)^8 + 1200(1.0075)^4
                                                                                                  only one error
                                                                                                  showing
       A_{12} = (A_{11} + 1200)1.0075^4
                                                                                                  recursion,
                          = (1200(1.0075)^8 + 1200(1.0075)^4 + 1200)1.0075^4
                                                                                                  formation of
                          = 1200(1.0075)^{12} + 1200(1.0075)^{8} + 1200(1.0075)^{4}
                                                                                                  series and then
                                                                                                  sum of the
                                                                                                  series AND
       A_{14} = 1200(1.0075)^{20} + 1200(1.0075)^{16}
                                                                                                  question not
                         + 1200(1.0075)^{12} + \dots + 1200(1.0075)^{8} 
+ 1200(1.0075)^{4}
                                                                                                  simplified
       = 1200[(1.0075)^4 + (1.0075)^8 + \dots + (1.0075)^{16} + (1.0075)^{20}]
                 \frac{ \left[ (1.0075)^4 ((1.0075)^{20} - 1) \right] }{(1.0075)^4 - 1} 
       ≈ $6568.71
       Total Investment = Compounding Total A_9 + Total A_{14}
                          =17091.01 + 6568.71
                          =$23659.72
33c
                                                                                                  1 mark correct
       Compounding Total Investment = 23659.72(1.0075)^{28}
                                                                                                  solution
                                                   ≈ $29165.61
                                                                                                  showing lump
                                                                                                  sum investment
```

	for correct
	rate/term

348	$A = \frac{h}{2} \left(2\sqrt{1 - h^2} + 2 \right)$	2 marks correct solution
	$= h\left(\sqrt{1-h^2} + 1\right)$ $= h\sqrt{1-h^2} + h$	1 mark partial correct with only one error AND question not simplified
348	For max/min $A' = 0$ $A' = \sqrt{1 - h^2} + \frac{h}{2} \times \frac{-2h}{\sqrt{1 - h^2}} + 1$ $= \sqrt{1 - h^2} + 1 - \frac{h^2}{\sqrt{1 - h^2}}$ $= \frac{\sqrt{1 - h^2}(\sqrt{1 - h^2} + 1)}{\sqrt{1 - h^2}} - \frac{h^2}{\sqrt{1 - h^2}}$ $= \frac{(1 - h^2) + \sqrt{1 - h^2}}{\sqrt{1 - h^2}} - \frac{h^2}{\sqrt{1 - h^2}}$ $= \frac{1 - 2h^2 + \sqrt{1 - h^2}}{\sqrt{1 - h^2}} = 0$	4 marks correct solution must show solution for stat point, nature check and value for max area 3 marks correct progress with ONLY one error AND question not simplified
	$1 - 2h^2 + \sqrt{1 - h^2} = 0 \text{ the fraction will} = 0 \text{ when the numerator} = 0$ $\sqrt{1 - h^2} = 2h^2 - 1$ $1 - h^2 = 4h^4 - 4h^2 + 1$ $4h^4 - 3h^2 = 0$ $h^2(4h^2 - 3) = 0$ $h = 0 \text{ or } h = \frac{\pm \sqrt{3}}{2}$ $therefore h = \frac{\sqrt{3}}{2} since h > 0$	2 marks correct with min two errors and progress of optimisation correct 1 mark ONLY one part correct
	When $h = 0.5$, $A' = 1.57$ > 0 and When $h = 0.9$, $A' = -0.42 < 0$, hence $h = \frac{\sqrt{3}}{2}$ gives a maximum	AND question not simplified
	Substitute <i>h</i> into formula for <i>A</i> : $A_{\text{max}} = \frac{\sqrt{3}}{2} \sqrt{1 - \left(\frac{\sqrt{3}}{2}\right)^2} + \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{4}$	